Translate this page in your language

Search

Wednesday, December 7, 2011

CDMA(Code Division Mutiple Access)

Code division multiple access (CDMA) is a channel access method used by various radio communication technologies. It should not be confused with the mobile phone standards called cdmaOne, CDMA2000 (the 3G evolution of cdmaOne) and WCDMA (the 3G standard used by GSM carriers), which are often referred to as simply CDMA, and use CDMA as an underlying channel access method.

One of the basic concepts in data communication is the idea of allowing several transmitters to send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). This concept is called multiple access. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency. CDMA is a form of spread-spectrum signalling, since the modulated coded signal has a much higher data bandwidth than the data being communicated.

An analogy to the problem of multiple access is a room (channel) in which people wish to talk to each other simultaneously. To avoid confusion, people could take turns speaking (time division), speak at different pitches (frequency division), or speak in different languages (code division). CDMA is analogous to the last example where people speaking the same language can understand each other, but other languages are perceived as noise and rejected. Similarly, in radio CDMA, each group of users is given a shared code. Many codes occupy the same channel, but only users associated with a particular code can communicate.

The technology of code division multiple access channels has long been known. In the USSR, the first work devoted to this subject was published in 1935 by professor D.V. Ageev. It was shown that through the use of linear methods, there are three types of signal separation: frequency, time and compensatory. The technology of CDMA was used in 1957, when the young military radio engineer Leonid Kupriyanovich in Moscow, made an experimental model of a wearable automatic mobile phone, called LK-1 by him, with a base station. LK-1 has a weight of 3 kg, 20-30 km operating distance, and 20-30 hours of battery life. The base station, as described by the author, could serve several customers. In 1958, Kupriyanovich made the new experimental "pocket" model of mobile phone. This phone weighed 0.5 kg. To serve more customers, Kupriyanovich proposed the device, named by him as correllator. In 1958, the USSR also started the development of the "Altay" national civil mobile phone service for cars, based on the Soviet MRT-1327 standard. The main developers of the Altay system were VNIIS (Voronezh Science Research Institute of Communications) and GSPI (State Specialized Project Institute). In 1963 this service started in Moscow and in 1970 Altay service was used in 30 USSR cities.

CDMA is a spread spectrum multiple access technique. A spread spectrum technique spreads the bandwidth of the data uniformly for the same transmitted power. A spreading code is a pseudo-random code that has a narrow Ambiguity function, unlike other narrow pulse codes. In CDMA a locally generated code runs at a much higher rate than the data to be transmitted. Data for transmission is combined via bitwise XOR (exclusive OR) with the faster code. The figure shows how a spread spectrum signal is generated. The data signal with pulse duration of Tb is XOR’ed with the code signal with pulse duration of Tc. (Note: bandwidth is proportional to 1 / T where T = bit time) Therefore, the bandwidth of the data signal is 1 / Tb and the bandwidth of the spread spectrum signal is 1 / Tc. Since Tc is much smaller than Tb, the bandwidth of the spread spectrum signal is much larger than the bandwidth of the original signal. The ratio Tb / Tc is called the spreading factor or processing gain and determines to a certain extent the upper limit of the total number of users supported simultaneously by a base station.

Each user in a CDMA system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance will occur when there is good separation between the signal of a desired user and the signals of other users. The separation of the signals is made by correlating the received signal with the locally generated code of the desired user. If the signal matches the desired user's code then the correlation function will be high and the system can extract that signal. If the desired user's code has nothing in common with the signal the correlation should be as close to zero as possible (thus eliminating the signal); this is referred to as cross correlation. If the code is correlated with the signal at any time offset other than zero, the correlation should be as close to zero as possible. This is referred to as auto-correlation and is used to reject multi-path interference.

In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).

No comments:

Post a Comment