Translate this page in your language


Thursday, December 8, 2011

Computer Worm

A computer worm is a self-replicating malware computer program, which uses a computer network to send copies of itself to other nodes (computers on the network) and it may do so without any user intervention. This is due to security shortcomings on the target computer. Unlike a computer virus, it does not need to attach itself to an existing program. Worms almost always cause at least some harm to the network, even if only by consuming bandwidth, whereas viruses almost always corrupt or modify files on a targeted computer.

Many worms that have been created are only designed to spread, and don't attempt to alter the systems they pass through. However, as the Morris worm and Mydoom showed, even these "payload free" worms can cause major disruption by increasing network traffic and other unintended effects. A "payload" is code in the worm designed to do more than spread the worm–it might delete files on a host system (e.g., the ExploreZip worm), encrypt files in a cryptoviral extortion attack, or send documents via e-mail. A very common payload for worms is to install a backdoor in the infected computer to allow the creation of a "zombie" computer under control of the worm author. Networks of such machines are often referred to as botnets and are very commonly used by spam senders for sending junk email or to cloak their website's address. Spammers are therefore thought to be a source of funding for the creation of such worms, and the worm writers have been caught selling lists of IP addresses of infected machines. Others try to blackmail companies with threatened DoS attacks.

Backdoors can be exploited by other malware, including worms. Examples include Doomjuice, which spreads better using the backdoor opened by Mydoom, and at least one instance of malware taking advantage of the rootkit and backdoor installed by the Sony/BMG DRM software utilized by millions of music CDs prior to late 2005.[dubious – discuss]

Beginning with the very first research into worms at Xerox PARC, there have been attempts to create useful worms. The Nachi family of worms, for example, tried to download and install patches from Microsoft's website to fix vulnerabilities in the host system–by exploiting those same vulnerabilities. In practice, although this may have made these systems more secure, it generated considerable network traffic, rebooted the machine in the course of patching it, and did its work without the consent of the computer's owner or user.

Some worms, such as XSS worms, have been written for research to determine the factors of how worms spread, such as social activity and change in user behavior, while other worms are little more than a prank, such as one that sends the popular image macro of an owl with the phrase "O RLY?" to a print queue in the infected computer. Another research proposed what seems to be the first computer worm that operates on the second layer of the OSI model (Data link Layer), it utilizes topology information such as Content-addressable memory (CAM) tables and Spanning Tree information stored in switches to propagate and probe for vulnerable nodes until the enterprise network is covered.

Most security experts regard all worms as malware, whatever their payload or their writers' intentions.

No comments:

Post a Comment